Thank you for the correction on my terminology. Oil doesn’t dissolve in soap and soap doesn’t dissolve in water, emulsions are not solutions.
However, I think the general point about oil attaching to the soap and the soap attaching to the water still stands. I would still say that “the soap attaches the oil to water” isn’t quite right. Per your statement, the soap attaches to both oil and water on opposite sides of the molecule, so the oil isn’t really attached to the water - at least not directly. That was the thing I was trying to articulate.
But you also remind me of something a chemistry professor once told me: it’s not the soap that cleans, it’s not the heat that cleans, it’s the physical scrubbing action that cleans. Soap and heat make it much easier, but if you add soap and hot water to a burnt dish and leave it to soak, everything will stay exactly where it is (separated) until you add physical energy to move things.
I would still say that “the soap attaches the oil to water” isn’t quite right. Per your statement, the soap attaches to both oil and water on opposite sides of the molecule, so the oil isn’t really attached to the water - at least not directly. That was the thing I was trying to articulate.
Yeah, it’s open to interpretation as we aren’t utilizing strict scientific terminology. The reason why i preface it that way is that technically emulsifiers are still oils/fats themselves, they’ve just undergone a chemical reaction that alters their polarity.
Also, when you are trying to create a proper emulsification the majority of the time you add you emulsifiers to the oils/fats first to create a partial emulsification, and then you add your water and energy to finish it off.
But I understand your reasoning, even the best emulsification is still technically an aided dispersion and will lose its homogenisation over time.
Thank you for the correction on my terminology. Oil doesn’t dissolve in soap and soap doesn’t dissolve in water, emulsions are not solutions.
However, I think the general point about oil attaching to the soap and the soap attaching to the water still stands. I would still say that “the soap attaches the oil to water” isn’t quite right. Per your statement, the soap attaches to both oil and water on opposite sides of the molecule, so the oil isn’t really attached to the water - at least not directly. That was the thing I was trying to articulate.
But you also remind me of something a chemistry professor once told me: it’s not the soap that cleans, it’s not the heat that cleans, it’s the physical scrubbing action that cleans. Soap and heat make it much easier, but if you add soap and hot water to a burnt dish and leave it to soak, everything will stay exactly where it is (separated) until you add physical energy to move things.
Yeah, it’s open to interpretation as we aren’t utilizing strict scientific terminology. The reason why i preface it that way is that technically emulsifiers are still oils/fats themselves, they’ve just undergone a chemical reaction that alters their polarity.
Also, when you are trying to create a proper emulsification the majority of the time you add you emulsifiers to the oils/fats first to create a partial emulsification, and then you add your water and energy to finish it off.
But I understand your reasoning, even the best emulsification is still technically an aided dispersion and will lose its homogenisation over time.
And glass is a liquid.
Not below its melting point.